Skip to content Skip to navigation

Phylotranscriptomic insights into the diversification of endothermic Thunnus tunas

drawing of three tunas
Oct 30 2018

Posted In:


Adam Ciezarek,  Owen Osborne,  Oliver N Shipley,  Edward J Brooks,  Sean Tracey, Jaime McAllister,  Luke Gardner,  Michael J E Sternberg,  Barbara Block,  Vincent Savolainen

Birds, mammals, and certain fishes, including tunas, opahs and lamnid sharks, are endothermic, conserving internally generated, metabolic heat to maintain body or tissue temperatures above that of the environment. Bluefin tunas are commercially important fishes worldwide and some populations are threatened. They are renowned for their endothermy, maintaining elevated temperatures of the oxidative locomotor muscle, viscera, brain and eyes, and occupying cold, productive high-latitude waters. Less cold-tolerant tunas, such as yellowfin tuna, by contrast, remain in warm-temperate to tropical waters year-round, reproducing more rapidly than most temperate bluefin tuna populations, providing resiliency in the face of large scale industrial fisheries. Despite the importance of these traits to not only fisheries, but responses to habitat utilisation and climate change, little is known of the genetic processes underlying the diversification of tunas. In collecting and analysing sequence data across 29,556 genes, we found that parallel selection on standing genetic variation is associated with the evolution of endothermy in bluefin tunas. This includes two shared substitutions in genes encoding glycerol-3 phosphate dehydrogenase, an enzyme that contributes to thermogenesis in bumblebees and mammals, as well as four genes involved in the Krebs cycle, oxidative phosphorylation, β-oxidation and superoxide removal. Using phylogenetic techniques, we further illustrate that the eight Thunnus species are genetically distinct, but found evidence of mitochondrial genome introgression across two species. Phylogeny-based metrics highlight conservation needs for some of these species.