Skip to content Skip to navigation

Potential Biological Control of Schistosomiasis by Fishes in the Lower Senegal River Basin

fish
Dec 4 2018

Posted In:

Publications

Martin C. Arostegui, Chelsea L. Wood, Isabel J. Jones, Andy Chamberlin, Nicolas Jouanard, Djibril S. Faye, Armand M. Kuris, Gilles Riveau, Giulio A. De Leo, and Sanna H. Sokolow

Abstract. More than 200 million people in sub-Saharan Africa are infected with schistosome parasites. Transmission of schistosomiasis occurs when people come into contact with larval schistosomes emitted from freshwater snails in the aquatic environment. Thus, controlling snails through augmenting or restoring their natural enemies, such as native predators and competitors, could offer sustainable control for this human disease. Fishes may reduce schistosomiasis transmission directly, by preying on snails or parasites, or indirectly, by competing with snails for food or by reducing availability of macrophyte habitat (i.e., aquatic plants) where snails feed and reproduce. To identify fishes that might serve as native biological control agents for schistosomiasis in the lower Senegal River basin—one of the highest transmission areas for human schistosomiasis globally—we surveyed the freshwater fish that inhabit shallow, nearshore habitats and conducted multivariate analyses with quantitative diet data for each of the fish species encountered. Ten of the 16 fish species we encountered exhibited diets that may result in direct (predation) and/or indirect (food competition and habitat removal) control of snails. Fish abundance was low, suggesting limited effects on schistosomiasis transmission by the contemporary fish community in the lower Senegal River basin in the wild. Here, we highlight some native species—such as tilapia, West African lungfish, and freshwater prawns—that could be aquacultured for local-scale biological control of schistosomiasis transmission.

doi:10.4269/ajtmh.18-0469